Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 13(1): 6152, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2077052

RESUMO

We report the first long-term follow-up of a randomized trial (NCT04978259) addressing the effects of remdesivir on recovery (primary outcome) and other patient-important outcomes one year after hospitalization resulting from COVID-19. Of the 208 patients recruited from 11 Finnish hospitals, 198 survived, of whom 181 (92%) completed follow-up. At one year, self-reported recovery occurred in 85% in remdesivir and 86% in standard of care (SoC) (RR 0.94, 95% CI 0.47-1.90). We infer no convincing difference between remdesivir and SoC in quality of life or symptom outcomes (p > 0.05). Of the 21 potential long-COVID symptoms, patients reported moderate/major bother from fatigue (26%), joint pain (22%), and problems with memory (19%) and attention/concentration (18%). In conclusion, after a one-year follow-up of hospitalized patients, one in six reported they had not recovered well from COVID-19. Our results provide no convincing evidence of remdesivir benefit, but wide confidence intervals included possible benefit and harm.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , Alanina/uso terapêutico , Antivirais/uso terapêutico , Finlândia/epidemiologia , Hospitalização , Qualidade de Vida , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome de COVID-19 Pós-Aguda
2.
Int Rev Immunol ; : 1-22, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1868145

RESUMO

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global threat. Despite strict control measures implemented worldwide and immunization using novel vaccines, the pandemic continues to rage due to emergence of several variants of SARS-CoV-2 with increased transmission and immune escape. The rapid spread of variants of concern (VOC) in the recent past has created a massive challenge for the control of COVID-19 pandemic via the currently used vaccines. Vaccines that are safe and effective against the current and future variants of SARS-CoV-2 are essential in controlling the COVID-19 pandemic. Rapid production and massive rollout of next-generation vaccines against the variants are key steps to control the COVID-19 pandemic and to help us return to normality. Coordinated surveillance of SARS-CoV-2, rapid redesign of new vaccines and extensive vaccination are needed to counter the current SARS-CoV-2 variants and prevent the emergence of new variants. In this article, we review the latest information on the VOCs and variants of interest (VOIs) and present the information on the clinical trials that are underway on evaluating the effectiveness of COVID-19 vaccines on VOCs. We also discuss the current challenges posed by the VOCs in controlling the COVID-19 pandemic and future strategies to overcome the threat posed by the highly virulent and rapidly transmissible variants of SARS-CoV2.


The COVID-19 is a contagious respiratory disease caused by a virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in 2019. The COVID-19 has now spread to all part of the world and has become a global threat. Even after the strict control measures and immunization programs to prevent the disease, COVID-19 is still causing destruction due to appearance of new strains of SARS-CoV-2 that transmit faster and capable of escaping the immunity. The faster spread of the new strains of viruses that cause more severe disease is the biggest challenge to control the COVID-19 pandemic by using the presently available vaccines. To control the COVID-19 pandemic we urgently need safe and effective vaccines against the corona viral variants. This can be achieved by tracking the appearance of new viral types, design and rapid production and supply of new vaccines against the virus. This article presents the latest information on the new types of SARS-CoV-2, and on the status of vaccine trials and their effectiveness against these viruses. Similarly, the information on the challenges posed by the new viral strains in controlling the COVID-19 and future strategies to overcome the threat posed by corona viruses is also provided.

3.
Expert Rev Vaccines ; 20(7): 857-880, 2021 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1254221

RESUMO

Introduction: The coronavirus disease 2019 (COVID-19) pandemic continues to spread worldwide and vaccination remains the most effective approach to control COVID-19. Currently, at least ten COVID-19 vaccines have been authorized under emergency authorization. However, these vaccines still face many challenges.Areas covered: This study reviews the concept and mechanisms of trained immunity induced by the Bacille Calmette Guérin (BCG) vaccine and identifies questions that should be answered before the BCG vaccine could be used to combat COVID-19 pandemic. Moreover, we present for the first time the details of current BCG vaccine clinical trials, which are underway in various countries, to assess its effectiveness in combating the COVID-19 pandemic. Finally, we discuss the challenges of COVID-19 vaccines and opportunities for the BCG vaccine. The literature was found by searching the PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of Science (www.webofknowledge.com), Embase (https://www.embase.com), and CNKI (https://www.cnki.net/) databases. The date was set as the default parameter for each database.Expert opinion: The advantages of the BCG vaccine can compensate for the shortcomings of other COVID-19 vaccines. If the efficacy of the BCG vaccine against COVID-19 is confirmed by these clinical trials, the BCG vaccine may be essential to resolve the challenges faced by COVID-19 vaccines.


Assuntos
Vacina BCG/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Ensaios Clínicos como Assunto/métodos , Imunidade Inata/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacina BCG/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , Humanos , Imunidade Inata/efeitos dos fármacos , Pandemias
4.
Int Rev Immunol ; 41(2): 283-296, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1218926

RESUMO

Bacillus Calmette-Guérin (BCG) is a live attenuated M. bovis vaccine that was developed about 100 years ago by Albert Calmette and Camille Guérin. Many countries have been using the vaccine for decades against tuberculosis (TB). The World Health Organization (WHO) recommends a single dose of BCG for infants in TB endemic as well as leprosy high risk countries, and globally almost 130 million infants are vaccinated yearly. The role of BCG is well known in reducing neonatal and childhood death rates. Epidemiological and retrospective cross-sectional studies demonstrated that the BCG vaccination protects the children against respiratory tract infections and lowers the risk of malaria in children. In addition, BCG enhances IFN-γ and IL-10 levels, thus providing immunity against respiratory tract infection even in elderly people. The BCG is also known to provide nonspecific innate immunity against viruses and parasites, through an innate immune mechanism termed 'trained immunity' and is defined as the immunological recall of the innate immune system by epigenetic reprogramming. Based on these studies it is suggested that the BCG has the potential to act as a protective agent against COVID-19. Further proven safety records of BCG in humans, its adjuvant activity and low-cost manufacturing make it an attractive option to stop the pandemic and reduce the COVID-19 related mortality. In this review we discuss the heterologous effects of BCG, induction of trained immunity and its implication in development of a potential vaccine against COVID-19 pandemic.


Assuntos
COVID-19 , Vacinas contra a Tuberculose , Idoso , Vacina BCG , Vacinas contra COVID-19 , Criança , Estudos Transversais , Humanos , Recém-Nascido , Pandemias/prevenção & controle , Estudos Retrospectivos , SARS-CoV-2
5.
PLoS One ; 15(10): e0240647, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-895060

RESUMO

The World Health Organization declared the COVID-19 epidemic a public health emergency of international concern on March 11th, 2020, and the pandemic is rapidly spreading worldwide. COVID-19 is caused by a novel coronavirus SARS-CoV-2, which enters human target cells via angiotensin converting enzyme 2 (ACE2). We used a number of bioinformatics tools to computationally characterize ACE2 by determining its cell-specific expression in trachea, lung, and small intestine, derive its putative functions, and predict transcriptional regulation. The small intestine expressed higher levels of ACE2 mRNA than any other organ. By immunohistochemistry, duodenum, kidney and testis showed strong signals, whereas the signal was weak in the respiratory tract. Single cell RNA-Seq data from trachea indicated positive signals along the respiratory tract in key protective cell types including club, goblet, proliferating, and ciliary epithelial cells; while in lung the ratio of ACE2-expressing cells was low in all cell types (<2.6%), but was highest in vascular endothelial and goblet cells. Gene ontology analysis suggested that, besides its classical role in the renin-angiotensin system, ACE2 may be functionally associated with angiogenesis/blood vessel morphogenesis. Using a novel tool for the prediction of transcription factor binding sites we identified several putative binding sites within two tissue-specific promoters of the ACE2 gene as well as a new putative short form of ACE2. These include several interferon-stimulated response elements sites for STAT1, IRF8, and IRF9. Our results also confirmed that age and gender play no significant role in the regulation of ACE2 mRNA expression in the lung.


Assuntos
Betacoronavirus/fisiologia , Biologia Computacional , Infecções por Coronavirus/virologia , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/virologia , Receptores Virais/fisiologia , Envelhecimento/metabolismo , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , COVID-19 , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Ontologia Genética , Humanos , Interferons/fisiologia , Pulmão/metabolismo , Masculino , Metaloproteases/biossíntese , Metaloproteases/genética , Neovascularização Fisiológica/fisiologia , Especificidade de Órgãos , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Receptores Virais/biossíntese , Receptores Virais/genética , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Caracteres Sexuais , Análise de Célula Única , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA